Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(1): 101983, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33458624

RESUMO

Social insects exhibit extensive phenotypic diversities among the genetically similar individuals, suggesting a role for the epigenetic regulations beyond the genome level. The ADAR-mediated adenosine-to-inosine (A-to-I) RNA editing, an evolutionarily conserved mechanism, facilitates adaptive evolution by expanding proteomic diversities. Here, we characterize the A-to-I RNA editome of honeybees (Apis mellifera), identifying 407 high-confidence A-to-I editing sites. Editing is most abundant in the heads and shows signatures for positive selection. Editing behavior differs between foragers and nurses, suggesting a role for editing in caste differentiation. Although only five sites are conserved between bees and flies, an unexpectedly large number of genes exhibit editing in both species, albeit at different locations, including the nonsynonymous auto-editing of Adar. This convergent evolution, where the same target genes independently acquire recoding events in distant diverged clades, together with the signals of adaptation observed in honeybees alone, further supports the notion of recoding being adaptive.

2.
Genome Biol ; 21(1): 26, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32028986

RESUMO

BACKGROUND: Mobile elements comprise a large fraction of metazoan genomes. Accumulation of mobile elements is bound to produce multiple putative double-stranded RNA (dsRNA) structures within the transcriptome. These endogenous dsRNA structures resemble viral RNA and may trigger false activation of the innate immune response, leading to severe damage to the host cell. Adenosine to inosine (A-to-I) RNA editing is a common post-transcriptional modification, abundant within repetitive elements of all metazoans. It was recently shown that a key function of A-to-I RNA editing by ADAR1 is to suppress the immunogenic response by endogenous dsRNAs. RESULTS: Here, we analyze the transcriptomes of dozens of species across the Metazoa and identify a strong genomic selection against endogenous dsRNAs, resulting in their purification from the canonical transcriptome. This purifying selection is especially strong for long and nearly perfect dsRNAs. These are almost absent from mRNAs, but not pre-mRNAs, supporting the notion of selection due to cytoplasmic processes. The few long and nearly perfect structures found in human transcripts are weakly expressed and often heavily edited. CONCLUSION: Purifying selection of long dsRNA is an important defense mechanism against false activation of innate immunity. This newly identified principle governs the integration of mobile elements into the genome, a major driving force of genome evolution. Furthermore, we find that most ADAR1 activity is not required to prevent an immune response to endogenous dsRNAs. The critical targets of ADAR1 editing are, likely, to be found mostly in non-canonical transcripts.


Assuntos
Imunidade Inata , RNA de Cadeia Dupla/genética , Seleção Genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Elementos de DNA Transponíveis , Modelos Genéticos , Edição de RNA , Transcriptoma
3.
Nat Commun ; 10(1): 1605, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962428

RESUMO

Colonies of the bumblebee Bombus terrestris are characterized by wide phenotypic variability among genetically similar full-sister workers, suggesting a major role for epigenetic processes. Here, we report a high level of ADAR-mediated RNA editing in the bumblebee, despite the lack of an ADAR1-homolog. We identify 1.15 million unique genomic sites, and 164 recoding sites residing in 100 protein coding genes, including ion channels, transporters, and receptors predicted to affect brain function and behavior. Some edited sites are similarly edited in other insects, cephalopods and even mammals. The global editing level of protein coding and non-coding transcripts weakly correlates with task performance (brood care vs. foraging), but not affected by dominance rank or juvenile hormone known to influence physiology and behavior. Taken together, our findings show that brain editing levels are high in naturally behaving bees, and may be regulated by relatively short-term effects associated with brood care or foraging activities.


Assuntos
Abelhas/fisiologia , Comportamento Animal/fisiologia , Edição de RNA/fisiologia , RNA/genética , Comportamento Social , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Encéfalo/metabolismo , Epigênese Genética/fisiologia , Feminino , Variação Genética/genética , Variação Genética/fisiologia , Masculino , RNA/isolamento & purificação , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA
4.
Genome Biol ; 19(1): 36, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29548336

RESUMO

High-throughput RNA-sequencing (RNA-seq) technologies provide an unprecedented opportunity to explore the individual transcriptome. Unmapped reads are a large and often overlooked output of standard RNA-seq analyses. Here, we present Read Origin Protocol (ROP), a tool for discovering the source of all reads originating from complex RNA molecules. We apply ROP to samples across 2630 individuals from 54 diverse human tissues. Our approach can account for 99.9% of 1 trillion reads of various read length. Additionally, we use ROP to investigate the functional mechanisms underlying connections between the immune system, microbiome, and disease. ROP is freely available at https://github.com/smangul1/rop/wiki .


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Software , Adulto , Algoritmos , Asma/genética , Bactérias/genética , Bactérias/isolamento & purificação , Linhagem Celular , Genes de Imunoglobulinas , Genes Codificadores dos Receptores de Linfócitos T , Humanos
5.
Nat Commun ; 8(1): 1440, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29129909

RESUMO

Adenosine deaminase acting on RNA 1 (ADAR1) is the master RNA editor, catalyzing the deamination of adenosine to inosine. RNA editing is vital for preventing abnormal activation of cytosolic nucleic acid sensing pathways by self-double-stranded RNAs. Here we determine, by parallel analysis of RNA secondary structure sequencing (PARS-seq), the global RNA secondary structure changes in ADAR1 deficient cells. Surprisingly, ADAR1 silencing resulted in a lower global double-stranded to single-stranded RNA ratio, suggesting that A-to-I editing can stabilize a large subset of imperfect RNA duplexes. The duplexes destabilized by editing are composed of vastly complementary inverted Alus found in untranslated regions of genes performing vital biological processes, including housekeeping functions and type-I interferon responses. They are predominantly cytoplasmic and generally demonstrate higher ribosomal occupancy. Our findings imply that the editing effect on RNA secondary structure is context dependent and underline the intricate regulatory role of ADAR1 on global RNA secondary structure.


Assuntos
Adenosina Desaminase/genética , Conformação de Ácido Nucleico , Edição de RNA/genética , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Adenosina/metabolismo , Composição de Bases/genética , Linhagem Celular Tumoral , Desaminação , Células Hep G2 , Humanos , Inosina/metabolismo , Biossíntese de Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Transcriptoma/fisiologia
6.
Genome Biol ; 18(1): 185, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28969707

RESUMO

BACKGROUND: Adenosine to inosine (A-to-I) RNA editing is a post-transcriptional modification catalyzed by the ADAR (adenosine deaminase that acts on RNA) enzymes, which are ubiquitously expressed among metazoans. Technical requirements have limited systematic mapping of editing sites to a small number of organisms. Thus, the extent of editing across the metazoan lineage is largely unknown. RESULTS: Here, we apply a computational procedure to search for RNA-sequencing reads containing clusters of editing sites in 21 diverse organisms. Clusters of editing sites are abundant in repetitive genomic regions that putatively form double-stranded RNA (dsRNA) structures and are rarely seen in coding regions. The method reveals a considerable variation in hyper-editing levels across species, which is partly explained by differences in the potential of sequences to form dsRNA structures and the variability of ADAR proteins. Several commonly used model animals exhibit low editing levels and editing levels in primates is not exceptionally high, as previously suggested. CONCLUSIONS: Editing by ADARs is highly prevalent across the Metazoa, mostly targeting dsRNA structures formed by genomic repeats. The degree to which the transcriptome of a given species undergoes hyper-editing is governed by the repertoire of repeats in the underlying genome. The strong association of RNA editing with the long dsRNA regions originating from non-coding repetitive elements is contrasted by the almost non-existing signal seen in coding regions. Hyper-edited regions are rarely expressed in a non-edited form. These results support the notion that the main role of ADAR is to suppress the cellular response to endogenous dsRNA structures.


Assuntos
Sequência Conservada , Edição de RNA , RNA de Cadeia Dupla/genética , Adenosina/genética , Adenosina Desaminase/metabolismo , Animais , Humanos , Inosina/genética , RNA de Cadeia Dupla/química , Xenopus
7.
PLoS Genet ; 13(7): e1006931, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28746393

RESUMO

In Drosophila, A-to-I editing is prevalent in the brain, and mutations in the editing enzyme ADAR correlate with specific behavioral defects. Here we demonstrate a role for ADAR in behavioral temperature adaptation in Drosophila. Although there is a higher level of editing at lower temperatures, at 29°C more sites are edited. These sites are less evolutionarily conserved, more disperse, less likely to be involved in secondary structures, and more likely to be located in exons. Interestingly, hypomorph mutants for ADAR display a weaker transcriptional response to temperature changes than wild-type flies and a highly abnormal behavioral response upon temperature increase. In sum, our data shows that ADAR is essential for proper temperature adaptation, a key behavior trait that is essential for survival of flies in the wild. Moreover, our results suggest a more general role of ADAR in regulating RNA secondary structures in vivo.


Assuntos
Aclimatação/genética , Adaptação Fisiológica/genética , Adenosina Desaminase/genética , Encéfalo/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Aclimatação/fisiologia , Adenosina/genética , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Drosophila melanogaster/fisiologia , Éxons/genética , Inosina/genética , Mutação , Conformação de Ácido Nucleico , RNA/química , RNA/genética , Edição de RNA/genética , Temperatura
8.
Cell ; 169(2): 191-202.e11, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388405

RESUMO

RNA editing, a post-transcriptional process, allows the diversification of proteomes beyond the genomic blueprint; however it is infrequently used among animals for this purpose. Recent reports suggesting increased levels of RNA editing in squids thus raise the question of the nature and effects of these events. We here show that RNA editing is particularly common in behaviorally sophisticated coleoid cephalopods, with tens of thousands of evolutionarily conserved sites. Editing is enriched in the nervous system, affecting molecules pertinent for excitability and neuronal morphology. The genomic sequence flanking editing sites is highly conserved, suggesting that the process confers a selective advantage. Due to the large number of sites, the surrounding conservation greatly reduces the number of mutations and genomic polymorphisms in protein-coding regions. This trade-off between genome evolution and transcriptome plasticity highlights the importance of RNA recoding as a strategy for diversifying proteins, particularly those associated with neural function. PAPERCLIP.


Assuntos
Evolução Biológica , Cefalópodes/genética , Edição de RNA , Transcriptoma , Adenosina Desaminase/metabolismo , Sequência de Aminoácidos , Animais , Cefalópodes/classificação , Cefalópodes/metabolismo , Sistema Nervoso/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Alinhamento de Sequência
9.
Mol Biol Evol ; 34(8): 1890-1901, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453786

RESUMO

The highly conserved ADAR enzymes, found in all multicellular metazoans, catalyze the editing of mRNA transcripts by the deamination of adenosines to inosines. This type of editing has two general outcomes: site specific editing, which frequently leads to recoding, and clustered editing, which is usually found in transcribed genomic repeats. Here, for the first time, we looked for both editing of isolated sites and clustered, non-specific sites in a basal metazoan, the coral Acropora millepora during spawning event, in order to reveal its editing pattern. We found that the coral editome resembles the mammalian one: it contains more than 500,000 sites, virtually all of which are clustered in non-coding regions that are enriched for predicted dsRNA structures. RNA editing levels were increased during spawning and increased further still in newly released gametes. This may suggest that editing plays a role in introducing variability in coral gametes.


Assuntos
Adenosina Desaminase/genética , Antozoários/genética , Edição de RNA/genética , Adenosina Desaminase/metabolismo , Animais , Antozoários/metabolismo , Sequência de Bases , Evolução Molecular , Genoma , Genômica , Humanos , Mamíferos/genética , Filogenia , RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
10.
PLoS Genet ; 11(12): e1005702, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26637167

RESUMO

Fragile X syndrome (FXS) is the most frequent inherited form of mental retardation. The cause for this X-linked disorder is the silencing of the fragile X mental retardation 1 (fmr1) gene and the absence of the fragile X mental retardation protein (Fmrp). The RNA-binding protein Fmrp represses protein translation, particularly in synapses. In Drosophila, Fmrp interacts with the adenosine deaminase acting on RNA (Adar) enzymes. Adar enzymes convert adenosine to inosine (A-to-I) and modify the sequence of RNA transcripts. Utilizing the fmr1 zebrafish mutant (fmr1-/-), we studied Fmrp-dependent neuronal circuit formation, behavior, and Adar-mediated RNA editing. By combining behavior analyses and live imaging of single axons and synapses, we showed hyperlocomotor activity, as well as increased axonal branching and synaptic density, in fmr1-/- larvae. We identified thousands of clustered RNA editing sites in the zebrafish transcriptome and showed that Fmrp biochemically interacts with the Adar2a protein. The expression levels of the adar genes and Adar2 protein increased in fmr1-/- zebrafish. Microfluidic-based multiplex PCR coupled with deep sequencing showed a mild increase in A-to-I RNA editing levels in evolutionarily conserved neuronal and synaptic Adar-targets in fmr1-/- larvae. These findings suggest that loss of Fmrp results in increased Adar-mediated RNA editing activity on target-specific RNAs, which, in turn, might alter neuronal circuit formation and behavior in FXS.


Assuntos
Adenosina Desaminase/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Proteínas de Ligação a RNA/genética , Proteínas de Peixe-Zebra/genética , Adenosina Desaminase/biossíntese , Animais , Axônios/metabolismo , Axônios/patologia , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/biossíntese , Síndrome do Cromossomo X Frágil/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Atividade Motora/genética , Neurônios/metabolismo , Neurônios/patologia , Edição de RNA/genética , Proteínas de Ligação a RNA/biossíntese , Sinapses/metabolismo , Sinapses/patologia , Transcriptoma/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/biossíntese
11.
Cell Rep ; 13(2): 267-76, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26440895

RESUMO

Genomic mutations in key genes are known to drive tumorigenesis and have been the focus of much attention in recent years. However, genetic content also may change farther downstream. RNA editing alters the mRNA sequence from its genomic blueprint in a dynamic and flexible way. A few isolated cases of editing alterations in cancer have been reported previously. Here, we provide a transcriptome-wide characterization of RNA editing across hundreds of cancer samples from multiple cancer tissues, and we show that A-to-I editing and the enzymes mediating this modification are significantly altered, usually elevated, in most cancer types. Increased editing activity is found to be associated with patient survival. As is the case with somatic mutations in DNA, most of these newly introduced RNA mutations are likely passengers, but a few may serve as drivers that may be novel candidates for therapeutic and diagnostic purposes.


Assuntos
Neoplasias da Mama/genética , Carcinoma/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Neoplasias da Próstata/genética , Edição de RNA , Transcriptoma , Feminino , Humanos , Masculino , Mutação , Regulação para Cima
12.
Cell Rep ; 10(2): 170-7, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25558066

RESUMO

Circular RNAs (circRNAs) are a large class of animal RNAs. To investigate possible circRNA functions, it is important to understand circRNA biogenesis. Besides human ALU repeats, sequence features that promote exon circularization are largely unknown. We experimentally identified circRNAs in C. elegans. Reverse complementary sequences between introns bracketing circRNAs were significantly enriched in comparison to linear controls. By scoring the presence of reverse complementary sequences in human introns, we predicted and experimentally validated circRNAs. We show that introns bracketing circRNAs are highly enriched in RNA editing or hyperediting events. Knockdown of the double-strand RNA-editing enzyme ADAR1 significantly and specifically upregulated circRNA expression. Together, our data support a model of animal circRNA biogenesis in which competing RNA-RNA interactions of introns form larger structures that promote circularization of embedded exons, whereas ADAR1 antagonizes circRNA expression by melting stems within these interactions.


Assuntos
RNA/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células HEK293 , Humanos , Íntrons , Modelos Genéticos , RNA/química , Edição de RNA , Interferência de RNA , RNA Circular , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regulação para Cima
13.
Nat Commun ; 5: 4726, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25158696

RESUMO

Adenosine-to-inosine editing is one of the most frequent post-transcriptional modifications, manifested as A-to-G mismatches when comparing RNA sequences with their source DNA. Recently, a number of RNA-seq data sets have been screened for the presence of A-to-G editing, and hundreds of thousands of editing sites identified. Here we show that existing screens missed the majority of sites by ignoring reads with excessive ('hyper') editing that do not easily align to the genome. We show that careful alignment and examination of the unmapped reads in RNA-seq studies reveal numerous new sites, usually many more than originally discovered, and in precisely those regions that are most heavily edited. Specifically, we discover 327,096 new editing sites in the heavily studied Illumina Human BodyMap data and more than double the number of detected sites in several published screens. We also identify thousands of new sites in mouse, rat, opossum and fly. Our results establish that hyper-editing events account for the majority of editing sites.


Assuntos
Genoma Humano , Edição de RNA , Análise de Sequência de RNA/métodos , Adenosina/genética , Adenosina Desaminase/genética , Animais , Encéfalo/fisiologia , Humanos , Inosina/genética , Camundongos , MicroRNAs/genética , Gambás/genética , Ornitorrinco/genética , RNA , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...